extremal basis - definition. What is extremal basis
DICLIB.COM
أدوات لغة الذكاء الاصطناعي
أدخل كلمة أو عبارة بأي لغة 👆
اللغة:     

ترجمة وتحليل الكلمات بواسطة الذكاء الاصطناعي

في هذه الصفحة يمكنك الحصول على تحليل مفصل لكلمة أو عبارة باستخدام أفضل تقنيات الذكاء الاصطناعي المتوفرة اليوم:

  • كيف يتم استخدام الكلمة في اللغة
  • تردد الكلمة
  • ما إذا كانت الكلمة تستخدم في كثير من الأحيان في اللغة المنطوقة أو المكتوبة
  • خيارات الترجمة إلى الروسية أو الإسبانية، على التوالي
  • أمثلة على استخدام الكلمة (عدة عبارات مع الترجمة)
  • أصل الكلمة

%ما هو (من)٪ 1 - تعريف

Extremal graph
  • The edges between parts in a regular partition behave in a "random-like" fashion.
  • The [[Petersen graph]] has chromatic number 3.
  • cliques]]. This is ''T''(13,4).

Standard basis         
BASIS OF EUCLIDEAN SPACE CONSISTING OF ONE-HOT VECTORS
Standard bases; Standard basis vector; Kronecker basis; Standard unit vector
In mathematics, the standard basis (also called natural basis or canonical basis) of a coordinate vector space (such as \mathbb{R}^n or \mathbb{C}^n) is the set of vectors whose components are all zero, except one that equals 1. For example, in the case of the Euclidean plane \mathbb{R}^2 formed by the pairs of real numbers, the standard basis is formed by the vectors
Basis (universal algebra)         
STRUCTURE INSIDE OF SOME (UNIVERSAL) ALGEBRAS, WHICH ARE CALLED FREE ALGEBRAS. IT GENERATES ALL ALGEBRA ELEMENTS FROM ITS OWN ELEMENTS BY THE ALGEBRA OPERATIONS IN AN INDEPENDENT MANNER
Basis (Universal Algebra)
In universal algebra, a basis is a structure inside of some (universal) algebras, which are called free algebras. It generates all algebra elements from its own elements by the algebra operations in an independent manner.
Dual basis         
BASIS ON A DUAL VECTOR SPACE CANONICALLY ASSOCIATED TO A BASIS ON THE ORIGINAL VECTOR SPACE
Reciprocal basis
In linear algebra, given a vector space V with a basis B of vectors indexed by an index set I (the cardinality of I is the dimensionality of V), the dual set of B is a set B∗ of vectors in the dual space V∗ with the same index set I such that B and B∗ form a biorthogonal system. The dual set is always linearly independent but does not necessarily span V∗.

ويكيبيديا

Extremal graph theory

Extremal graph theory is a branch of combinatorics, itself an area of mathematics, that lies at the intersection of extremal combinatorics and graph theory. In essence, extremal graph theory studies how global properties of a graph influence local substructure. Results in extremal graph theory deal with quantitative connections between various graph properties, both global (such as the number of vertices and edges) and local (such as the existence of specific subgraphs), and problems in extremal graph theory can often be formulated as optimization problems: how big or small a parameter of a graph can be, given some constraints that the graph has to satisfy? A graph that is an optimal solution to such an optimization problem is called an extremal graph, and extremal graphs are important objects of study in extremal graph theory.

Extremal graph theory is closely related to fields such as Ramsey theory, spectral graph theory, computational complexity theory, and additive combinatorics, and frequently employs the probabilistic method.